Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hoong-Kun Fun, ${ }^{\text {a* }}$ S. Kannan, ${ }^{\text {b }}$ Suchada Chantrapromma, ${ }^{\text {a }} \dagger$ Ibrahim Abdul Razak ${ }^{\text {a }}$ and Anwar Usman ${ }^{\text {a }}$

${ }^{\text {ax }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Fuel Chemistry Division, Bhabha Atomic Research Center, Mumbai 400 085, India

+ Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=183 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.046$
$w R$ factor $=0.116$
Data-to-parameter ratio $=21.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[aquabis(1,3-diphenylpropane-1,3-dionato$\kappa^{2} \mathrm{O}, \mathrm{O}^{\prime}$)dioxouranium(VI)] dicyclohexyl-18-crown-6-ether chloroform disolvate

In the title compound, $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$. (dicyclohexyl-18-crown-6) $2 \mathrm{CHCl}_{3}$ or $\left[\mathrm{UO}_{2}\left(\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot \mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{6}$ $2 \mathrm{CHCl}_{3}$, where DBM is 1,3-diphenylpropane-1,3-dionate, the U^{VI} atom is coordinated by seven O atoms to give a distorted pentagonal bipyramidal geometry. The structure is centrosymmetric. The 18-crown-6 molecule is hydrogen bonded $(\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O})$ by the water molecule of $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, and these binuclear units are interconnected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

An enhancement in the solvent-extraction separation of the uranium(VI) ion from nitric acid medium using mixtures of β-diketones and crown ethers has been reported (Mathur \& Choppin, 1993). The species responsible for this extraction have been isolated in the solid state and have been characterized by spectroscopy and X-ray diffraction methods (Kannan et al., 2001). The structures of the compounds $\left[\mathrm{UO}_{2}(\mathrm{TTA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot$ (benzo-15-crown-5), (1), and $\left[\left\{\mathrm{UO}_{2}{ }^{-}\right.\right.$ (TTA) $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\}$ (benzo-18-crown-6)], (2) (TTA is the anion of 1-trifluoromethyl-3-thiophenyl-1,3-propanedione; Kannan et al., 2001), showed that the nature of compound formed in the solid state is changed when the nature of the crown ether is changed for a given uranyl bis(β-diketonate). For example, in compound (1), the benzo-15-crown-5 molecule acts as a second-sphere ligand and bridges two $\left[\mathrm{UO}_{2}(\mathrm{TTA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ moieties through hydrogen bonds. However, in compound (2), the benzo-18-crown-6 molecule acts as a third-sphere ligand and bridges two dinuclear $\left[\mathrm{UO}_{2}(\mathrm{TTA})_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$ moieties through hydrogen bonds. This observation prompted us to study the nature of compounds formed in the solid state when the nature of β-ketonate is changed. As part of our systematic work on synergistic compounds of uranyl bis $(\beta$ diketonates) with neutral donor ligands (Kannan \& Venugopal, 1995; Kannan, Venugopal, Pillai, Droege \& Barnes, 1996; Kannan, Venugopal, Pillai, Droege, Barnes \& Schlember, 1996; Kannan \& Ferguson, 1997; Kannan, 2000; Kannan et al., 1997, 2000, 2001), we report the structure of the title compound, $\left[\mathrm{UO}_{2} \text { (diphenylpropane-1,3-dionanto- } O, O^{\prime}\right)_{2^{-}}$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot\left(\right.$ dicyclohexyl-18-crown-6) $2 \mathrm{CHCl}_{3}$, (I).

(I)

The asymmetric unit of (I) contains one $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$] unit, half a dicyclohexyl-18-crown-6 molecule and one

Received 25 April 2002
Accepted 22 July 2002
Online 31 July 2002

Figure 1
The asymmetric unit of compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. The symmetry code is as in Table 2.
CHCl_{3} molecule. The remaining portion of the title compound are generated by an inversion center. The uranium(VI) ion is surrounded by seven O atoms, viz. four O atoms of the DBM ligand, two uranyl O atoms, and the O atom of a water molecule, to give a distorted pentagonal bipyramidal geometry. The four O atoms from the DBM ligand ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3$ and O 4) and atom $\mathrm{O} 1 W$ of the water molecule form a planar pentagon with a maximum deviation of 0.069 (4) \AA for O1, while the two uranyl O atoms occupy the apices. The U atom is displaced by 0.0338 (2) \AA from the pentagonal plane. The two $\mathrm{U}-\mathrm{O}_{\text {uranyl }}$ distances are 1.764 (4) and 1.771 (4) \AA and $\mathrm{U}-\mathrm{O}_{\text {diketonate }}$ distances range from 2.312 (4) to 2.356 (4) $\AA ; \mathrm{U}-\mathrm{O}_{\text {water }}$ is 2.465 (4) \AA. These values are within acceptable ranges, and agree with the values reported earlier (Kannan, Venugopal, Pillai, Droege \& Barnes, 1996; Kannan et al., 1997, 2001; Kannan \& Ferguson, 1997).

The configuration of the two phenyl rings in the diphenyl-propane-1,3-dionate (DBM) systems are different, corresponding to dihedral angles of 28.82 (4) and 60.2 (4) ${ }^{\circ}$ between the phenyl rings in the two DBM systems. In the dicyclohexyl-18-crown-6 moiety, the cyclohexyl ring adopts a chair conformation, with puckering parameters (Cremer \& Pople, 1975) $Q_{2}=0.048$ (7) $\AA, Q_{3}=-0.552$ (7) $\AA, Q_{T}=0.555$ (7) \AA and $\theta=174.9(7)^{\circ}$.

The $\mathrm{O}-\mathrm{H}_{\text {water }} \cdots \mathrm{O}_{\text {crown }}$ hydrogen bonds involving the crown atoms O 8 and O 9 link the crown ether with two $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ units,; this is similar to that observed in the compound (1), while the two $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ units are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}_{\text {uranyl }}$ hydrogen bonds. The chloroform molecules are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonded to the uranyl O atom (Table 2).

Experimental

Stoichiometric amounts of $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and dicyclohexyl18 -crown-6 were refluxed in chloroform (25 ml) for 15 min . The volume of the solution was reduced to 5 ml and was then layered with toluene (2 ml). The solution, on slow evaporation, yielded the title complex in 75% yield. The product was recrystallized from a chloroform-toluene mixture and was indentified by IR, ${ }^{1}$ NMR and elemental analyses.

Crystal data

$\left[\mathrm{UO}_{2}\left(\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$--
$\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{6} \cdot 2 \mathrm{CHCl}_{3}$
$M_{r}=2080.27$
Monoclinic, $P 2_{1 / c} c$
$a=15.5427$ (1) \AA
$b=15.2483$ (1) \AA
$c=19.4582(2) \AA$
$\beta=107.643$ (1) ${ }^{\circ}$
$V=4394.67(6) \AA^{3}$
$Z=2$
Data collection
Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.650, T_{\text {max }}=0.744$
26358 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.116$
$S=0.95$
10599 reflections
496 parameters
$D_{x}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=2.6-28.3^{\circ}$
$\mu=3.93 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Block, orange
$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

10599 independent reflections
7581 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.096$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-20 \rightarrow 20$
$k=-20 \rightarrow 16$
$l=-25 \rightarrow 21$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0272 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.57 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-4.23 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

U1-O5	$1.764(4)$	U1-O4	$2.348(4)$
U1-O6	$1.771(4)$	U1-O3	$2.356(4)$
U1-O2	$2.312(4)$	U1-O1 W	$2.465(4)$
U1-O1	$2.340(4)$		
O5-U1-O6	$179.44(19)$	O6-U1-O3	$89.34(16)$
O5-U1-O2	$89.11(16)$	O2-U1-O3	$73.28(13)$
O6-U1-O2	$90.43(16)$	O1-U1-O3	$144.03(13)$
O5-U1-O1	$93.38(16)$	O4-U1-O3	$70.28(13)$
O6-U1-O1	$86.16(15)$	O5-U1-O1 W	$90.22(16)$
O2-U1-O1	$71.09(13)$	O6-U1-O1 W	$89.95(15)$
O5-U1-O4	$90.64(16)$	O2-U1-O1 W	$142.61(13)$
O6-U1-O4	$89.93(16)$	O1-U1-O1 W	$71.64(13)$
O2-U1-O4	$143.55(13)$	O4-U1-O1 W	$73.84(13)$
O1-U1-O4	$145.24(13)$	O3-U1-O1 W	$144.11(13)$
O5-U1-O3	$90.83(17)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 8^{\mathrm{i}}$	0.82	2.06	2.814 (6)	152
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 9$	0.84	1.96	2.775 (5)	166
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 9$	0.93	2.48	3.319 (8)	150
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.50	3.410 (8)	167
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{6}{ }^{\text {ii }}$	0.93	2.55	3.467 (8)	167
C41-H41 . ${ }^{\text {O6 }}$	0.98	2.30	3.153 (10)	145

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$.

All H atoms were geometrically placed in ideal positions and allowed to ride on their attached parent atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$. The range of $\mathrm{O}-\mathrm{H}$ distances is $0.82-0.84 \AA$. At this stage, the refinement converged to an R value of 0.054 ($w R=$ 0.167). However, the difference map showed three peaks (4.11, 3.95 and $1.63 \mathrm{e} \AA^{-3}$) around the inversion centre ($1 / 2,0,1 / 2$). A search for solvent-accessible voids in the crystal, using PLATON (Spek, 1990) showed a potential solvent volume of $197 \mathrm{e}^{\circ} \AA^{-3}$. Since attempts to refine the structure with a rational solvent model failed, the SQUEEZE procedure in PLATON was used to obtain solvent-free reflection data. Further refinement of the structure with the solventfree reflection data converged to an R value of $0.046(w R=0.111)$. The highest peak and the deepest hole were 0.64 and $0.92 \AA$ from atom U1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/PFIZIK/610961. SK is grateful to Dr V. Venugopal, Head
of the Fuel Chemistry Division, for his interest in this work, and AU wishes to thank Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Kannan, S. \& Venugopal, V. (1995). Polyhedron, 14, 2349-2354.
Kannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A. \& Barnes, C. L. (1996). Polyhedron, 15, 97-101.

Kannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A., Barnes, C. L. \& Schlemper, E. O. (1996). Polyhedron, 15, 465-471.
Kannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A. \& Barnes, C. L. (1997). Inorg. Chim. Acta, 254, 113-117.

Kannan, S. \& Ferguson, G. (1997). Inorg. Chem. 36, 1724-1725.
Kannan, S. (2000). J. Chem. Soc. Chem. Res (S), pp. 344-345.
Kannan, S., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2000). J. Chem. Soc. Chem. Res (S). pp. 50-51.
Kannan, S., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2001). Polyhedron, 20, 2145-2150.
Mathur, J. N. \& Choppin, G. R. (1993). Solvent Ext. Ion Exch. 11, 1-18.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

